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CANONICAL FORMS AND UNIFICATION

Jean-Marie Hullot
INRIA and SRI International

Abstract y
Fay has described in |2,3] a complete T-unification for equational theories 7' that possess,
a complete set of reductions as defined by Knuth and Bendix {12]. This algorithm relies essen-
tially on using the narrowing process defined by Lankford [13). In this paper we first study the
relations between narrowing and unification and we give a new version of Fay's algorithm. We
then show how to eliminate many redundancies in this algorithm and give a sufficient condition
for its termination. Finally, we show how to extend the previous results to various kinds of
canonical term rewriting systems.

1, Introduction.

In this paper we are interested in unification problems that arise in equational
theories. More precisely, we study the case of an equational theory T that may be em-
bedded in a complete set of reductions (or canonical term rewriting system) R as defined
by Knuth and Bendix [12]. Let us write — the reduction relation associated to R and
R(M) the (unique) ~-normal form of any term M. A decision procedure for T-equality
is known via —-normal form:

M =71 N & R(M) = R(N).

We would like also to be able to solve equations in T, that is to T-unify two given terms;
this is quite a difficult problem. Take for instance the canonical term rewriting sytem
reduced to the single equation:

1(/(2,9),2) = £(=, /0, 2)).

Solving equations in the corresponding equational theory is the problem of associative
unification, which has only recently shown to be decidable by Makanin [21].

A general result has been obtained by Fay, who describes in [2,3] such a process to
resolve equations in T. This algorithm is not, in general, a decision procedure for 7T-
unification since termination of the process is not ensured. However one can organise
this algorithm so that it can be used as a semi-decision procedure for T-unification in
the following sense: if the two terms are unifiable, then a solution will be found in a
finite time. Moreover, Fay has shown that this algorithm produces a complete set of 7-
unifiers. Improvements on Fay's algorithm have been given by Lankford. An analogous
result has been found by Huet who has given in [4] a unification algorithm for A-calculus
that relies essentially on the existence of a canonical form for A\-conversion.

In this paper we shall present a new version of Fay's algorithm. In a second step
we shall eliminate many redundancies in our algorithm and sufficient conditions will be
given to ensure its termination.
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New kinds of canonical term rewriting systems have been defined by Lankford and
Ballantyne [16,17,18], Huet [6,7) and Peterson and Stickel [24]. Fay conjectures in (3]
that his algorithm extends to the case of permutative reductions {17] and Lankford and
Ballantyne use such an extension for associative and commutative theories in the ap-

. pendix of [19]. We shall give in this paper extensions of Fay’s algorithm for Huet's and

Peterson and Stickel’s canonical term rewriting systems.

2. An overview of first order terms.

We briefly survey first order terms. Our definitions and notations are consistent
with those of Huet [6] and Huet and Oppen [9).

2.1. First order terms.

Let V be a denumerable set of elements called variables, and C a finite or denumerab-
le set of elements called constants with VN C = 0. Elements in C are graded by an arity
function a: C — N where N is the set of integers. The set of terms T is the smallest set
containing V and closed by the operations:

My, ..., Ma(p) = f(My,..., Ma(p)

for every f in C. If a(f) = 0, we abbreviate f() in f. For every M in T, V(M) will
denote the set of variables of M.

2.2. Substitutions.

Definition. A substitution is a mapping o from V to ¥ with o(z) = z almost everywhere.
Substitutions are classically extended as morphisms of T. For every substitution o, we
define the set of variables affected by o or domain of o by D(c) = {z|o(z) %~ z} and the
set of variables introduced by o by I{0) = U,E,(,)V(a(z)). For V C V, we define the
restriction of o to V by (0 1 V)(z) = o{z) if z € V and (0 1 V)(2z) = z otherwise.

We define the preorder < of subsumptionin T by M < N & 30 o(M) = N.
If such a o exists, its restriction to V(M) is unique and we call it the match of N by
M. Finally, wedefine M=N& MK N & N < M, = is variable renaming. We
extend < to substitutions by: 0 < o' & Vz o(z) < o(z2).

We say that two terms M and M’ are unifiable iff 3¢ o(M) = o(M’). Let us
denote by Ug(M, M’) the set of all unifiers of M and M. If two terms are unifiable, then
there exists a minimum unifier, that is 30 € Ug(M, M'), V8 € Ug(M, M'), 0 < 0. This
element is unique up to variable renaming and may be found by the unification algorithm
[5,22,23,27]. Furthermore, note that it is always possible to impose to the minimum
unifier o the condition D(o)N J(0) = 6. We will always choose such a minimum unifier.




2.3. Occurrences.

In order to deal formally with the subterms of a term we define the occurrences (i.e.
sequences of integers) denoting an access path in a term. Let N:,. be the set of finite
sequences of positive integers, A the empty sequence and - the operation of concatenation
on sequences. The elements of N :,. are called occurrences and we denote them by u, v, w.
The set of occurrences is partially ordered by the prefix ordering: u < v & Jw v =
4 - w in this case, we define v/u = w. If ¥ X v and v X u we say that u and v are
disjoint, and we write u | v. Finally, we define 4 < v iff ¥ < v and u 7% v. For any
term M, we define ils set of occurrences O(M) as a finite subset of N, + a3 follows:

(i) A€ o(M),
(i) ue O(M)=2i-u€O(F(M,.... M) Vi 1<i<n.

If u € O(M), we define the subterm of M at u as the term M /u, and for every M’
the replacement in M of M' at u as the term M{u — M}, by:

(i) M/A=M,

(i) F(My,..., Ma)fi-u= Mi/u,

(iii) MA «~ M) =M,

(iv) F(M,...,Mp)ls-u « M'| = F(M,,..., Mijlu « M'],..., My).

To distinguish between variable and nonvariable occurrences we define O(M) as
{u € O(M)|M/ug V}, and Fr(M) = (ue O(M)|M/u€ V}.

3. Reductioh, narrowing and unification. .

We call an equation any pair of terms. An equation will be denotea by M = N.
Let T be any finite set of equations. We define the relation =1 on T as the compatible,
stable, symmetric closure of T. We define the equality in the equational theory T or T-
equality to be the congruence generated by T, that is =y. It will be denoted by =r.
Example. The equational theory of groups is generatcd by the set of equations:

z240=z;
z+(—2)=0;
(z4+y)+s=z+(y+2)

We are interested in unifying terms in the equational theory T; given two terms
M and M', we shall say that a substitution o is a T-unifier of M and M' iff o(M) =¢
o{M'). Ur(M, M') will denote the set of all T-unifiers of M and M'. When dealing
with ordinary unification, we have seen that two unifiable terms have a minimum unifier.
This is no longer the case with T-unification. However, this notion generalizes to the
one of a complete set of T-unifiers |4,5,25].




Deflnition. Let M and M’ be two terms and W be a finite set of variables containing
V = V(M) U V(M'). We say that a set of substitutions Z is a complete set of unifiers
of M and M’ away from W iff:

(i) VYoeZ Dlo)CV & I)NW=0,
(i) 2 CUr(M, M),
(iii) Vo€ Ur(M,M') 30€X 0<rofV]

where <r is the preorder defined on T by M <r M’ iff M' =r o(M) and <r [V} is
the following extension of <y to substitutions: o < o/ [V] iff there exists a substitution
p such that o/(z) =r p(o(z)) for all z in V. CSUr(M, M', W) will denote the set of all
such Z. In addition Z is said to be minimal iff it satisfies the further condition:

(iv) Vo, €L o#d = 0Lsd [V]

A discussion of general properties of a complete set of unifiers may be found in [5).
Note that the introduction of the set W is motivated by technical reasons: it is a way
to avoid conflicts when choosing new variables.

A T-unification algorithm is complete if it generates a complete set of T-unifiers
for all T-unifiable input terms. Complete unification algorithms are known for various
theories including commutativity, associativity [25], idempotence [26], associativity and
commutativity |29}, associativity commutativity and idempotence [20], and abelian group
theory [14]. Note that we do not require any termination property.

A very general result for T-unification problems has been obtained by Fay, who
describes in [2,3] such a T-unification algorithm in the case where the equational theory
T may be described by a complete set of reductions as defined by Knuth and Bendix
[12]. We recall that a term rewriting system R is a set of pairs of terms 4, — &, such
that V(7x) C V(&). We say that term M — z-reduces to term N at occurrence u and
we write M — N iff:

I~ h€ER Jo WEOM) Mlu=olnu) & N= M|u+« o).

Sometimes we will write: M —[, x) N. We say that a term M is in — z-normal form ift
AN, M =2 N. I M ~», N and N is in —z-normal form, we say that N is a — -
normal form of M. We say that a substitution o is in — z-normal form iff Vz € D(o0),

o(z) is in — g-normal form.
A term rewriting system R is said to be a complete set of reductions or a canonical

term rewriting system iff:
(a) — & is noetherian, that is, there does not exist infinite derivation M; — M;: - -
(b) —» » is confluent, that is VM, My, M,, such that M —2 My and M — M, then
IM’ such that M; ~ M’ and M; —3 M'.
Note that if R is a canonical term rewriting system, each term M admits a unique
— z-normal form we shall denote by R(M). Thus a decision procedure for T-equality is

4
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known via this normal form. More precisely, we have:

M =1 N & R(M) = R(N).

Knuth and Bendix give in [12] a way to decide if a finite and ncetherian term sewriting
system R is canonical. A detailed study may also be found in [6].

It is not possible to define a canonical term rewriting system for a theory T which
includes, for instance, a commutativity axiom (condition (a) never holds with such an
axiom). Different ways have been proposed to extend the notion of canonical term
rewriting systems as we shall see in section 5.

Our aim in this section is to give a new version of Fay’s algorithm.

Notation. — will be — » where R is any canonical term rewriting system defining an
equational theory T.

3.1. Narrowing.

The basic idea in Fay’s algorithm is to combine ordinary unification and “narrowing.
Informally narrowing a term is applying to it the minimum substitution such that the
resulting term is not in —-normal form and then reducing it one step. Slagle [28] first
noticed the difficulties arising when working with terms that are “narrowable” and thus
considered in his work only sets of clauses which are fully “narrowed.” Lankford in (13]
was first to show the interest of the iteration of narrowing and to give applications of
such a “narrowing procedure.” We define below a relation on T we call the narrowing
relation. A step of derivation using this relation is very close to the notion of Lankford's
immediate narrowing.

Defipition. Let M be a term and V be a finite set of variables containing V(M). Assume
there exists a nonvariable subterm of M, say M,, which is unifiable with the left part
of some rule 44 — & in R. More formally:

Ju € -O-(M)v 37'& - 6): € kn u.(M/ulqk) # 00

where we assume 7, — 6 is renamed so that V(v)NV = 0.
Let ¢ be the minimum unifier of M; = M/u and 7x. We say that o is a narrowing
substitution of M away from V. NS(M, V) will denote the finite set of such substitu-

tions.
Let us now consider the term M obtained from o( M) in replacing o(M;) by o(é), that
is:

M = o(M)|u + o{b)] = o{ M|u « &]).

We say that M is narrowable in M' at occurrence u using rule yx — & and we write:
MNP o0 M.

A+ is called the narrowing relation on T.




Natations. Sometimes we will abbreviate Ar¢(v,x,0) in Ar*{u,xj OF Ar*[o]-

Remark 1. Note that our definition is not exactly the one used by Lankford, Fay or
Slagle. More precisely, we do not assume that M is normalised and we do not normalize
M', 50 that we have:

The motivation behind this modification is that we want to express very precisely cor-
respondences between reduction and narrowing in order to find sufficient conditions
ensuring the termination of the narrowing process.

Remark 2. The condition V(yx) N V = 0 ensures that o( M) is reducible by — using
7% — Ok. Note that M’ may contain variables that are not in V; these variables come
from V(vx). In the next section, where we study the iteration of the narrowing process,
we will have to make explicit the renaming of variables of the 7x's at each step of the
iteration so as to avoid conflict between the names of all these “new” variables. In
practice, the problem is simplified by using the GENSYM operator of LISP for instance.

Example. Let us consider the following canonical term rewriting system R:
R = {/(z,2z) - z},
and the term M = f(zi, f(y1,21)). M is narrowable at occurrence A since it is unifiable
with f(z, z):
MAs Sy, 21), 0= {(z « Sy, 21)), (21 + f(1, 22))}
and at occurrence 1 for the subterm f(y;, 2,) is unifiable with f(z, z):
M"\r‘(x]f(zn z), o= {{y1 + 2),(2 + 2)}.

Remark 3. Let us now return to the initial problem we were interested in: given two
terms P and @, find a substitution ¢ such that:
U(P) =r O(Q)’ (1)

or equivalently:

R(o(P)) = R(o(@))- (2)
Assume the problem has a solution, say o, then there are two cases: either o is a unifier
of P and @ in the usual sense in which case one can find a minimum unifier of P and Q
by using the unification algorithm. Or o does not unify P and @, in which case at least
one of o(P) and o(Q) is —-reducible, since otherwise it would be impossible to have (2).
In this case at least one of P and @ is narrowable.

3.2. Narrowing and reduction.

Using the notations of remark 3 of the previous section, the equivalence between (1)
and (2) gives a particular interest in the study of —-derivation issuing from o(M) where
o is any substitution and M is any term. The aim of the following theorem is to show
how one can make correspond any such derivation to a Ap+-derivation and conversely. In
other words, we shall show that any —-derivation issuing from o{ M) may be “projected™
on a A\y+-derivation issuing from M. And, conversely, any Ap+-derivation issuing from
M may be considered as the “projection™ of a certain class of —-derivations.

6
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Theorem 1. Let M be any term, V be a finite set of variables containing V(M), and
n be a normalised substitution with D(n) C V(M). Consider any —-derivation issuing
from n(M):

n(M) = No = [voko) N1 =[us,ks) N2 = *** P [un_skas] Na (1)
There exists an associated \+-derivation issuing from M:

M = MNP (uoko, 00 MNP (1,610 MIN - NP [unc sibns,0n 1] M, (2)

and for each i, 0 < § < n, a substitution n; and a finite set of variables V; such that:

(i) D(n') g Vl':

(ii) i is normalised,
(iii) (n1V)=(nib:tV),
(iV) ﬂu(M-) = Nip

where ao = € and 0.-.,.1 = a.-+10.-.
Conversely, to each \>-derivation (2) and every n such that 6, < n{V], we can
associate a —-derivation (1).

As usual, the motivation behind the introduction of the V; is technical: it is a way to
avoid conflicts between “new” and initial variables. As one can see in the following proof,
it is not totally trivial to deal in a mathematical way with this problem of renaming. In
a sense we have to give all the details of a “garbage-collecting” process.

Proof. = By induction on . For 1 = 0 it is obvious, taking no = n and Vo = V U D(n).
Let us assume (i) to (iv) hold for 3.
Since MA*[u,k)Mis1, we have:

o 0’('11“) = M.-/u;,

where 7y, is renamed so that D(e)NVi=0.
From assumptions (ii) and (iv) for ¢, we get us € O(M;) and therefore:

ni Mi/u) = o1x,).
Let us consider p = n: U 0. We have:
p(Mifui) = p1x,)s

and thus:
MAP (v ok 0d Mit1s

where o; is the minimum unifier of M;/u;4+1 and 7x,. We have o; < p, and thus there ;
exists a substitution n’ such that p = n’ci. Therefore:

n=((n'e:) 1 V).
. .




Now, let:
Vi1 = (ViU I(03)) — D(ai),

and:
Nigr =101 Viga.
We get (i) and:
ni = (Ni4+100) T Vi (*)
(Remember that we impose D(0;) N I (o) = 9.)
Now, let us consider z in Vi ;. There are two cases:

a) z € I(0o:); then 3y € D(n:) such that z € V(oi(y)), and ni(y) = ni+1(0i(y)) normal-
ised implies n;41(z) normalized.

b) otherwise oi(z) = =z since 2&D(0;+1) and therefore n;41(z) = n:(z) is normalized,
which proves (ii).
We now assume (iii) for ¢:
ntV=nb1tV,

and show it for ¢ 4 1. From (*) above, we get:
(8} 1 V = (((ni+100)  V3)6i) 1 V.

From the definition of 6;, we get I(6;) C Viand V C ViU D(6:). The above expression
simplifies therefore to:
(ni4108:) 1V = (iqa0:) T V,

proving (iii).

Finally we get easily V(M;) C V;, from which we get:
ni+1(Mit1) = ni10i( Milui « b)) = ni(Mifuigs = Or,yy) = Niga,

proving (iv).
Note that because of (iii) every 6; t V is normalized.
¢ Conversely, let us consider any Ap+-derivation (2) and any substituticn # such that
0n < n[[V]). Let p be such that n 1 V = (pfa) T V. We define substitutions n; for
0<i1<n—1by:
i = pOnOn—1**°0i,

and substitution n, as being p. With N; = n:(M;), it is easy to show by induction on f,
that:
n(M) = No = [ug,ko) N1 =us,ks) N3 = -+ ={un_s,kn—y] Na.

Now:

No = no(Mo) = ﬂo(M) = nabn( M) = n(M),
since V(M) C V, which establishes the <-part. 0
' 8
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3.3. Narrowing and unification.

In this section we describe a nondeterministic T-unification algorithm. Before giving

this algorithm, we prove two key lemmas about the connection between narrowing and
T-unification.
% Let us consider two terms P and @. In order to find T-unifiability properties of
! : these two terms we will have to iterate the narrowing process on both P and @ in
? parallel. It will simplify matters to iterate the narrowing process on the single term
M = H(P,Q) where H is a “new” function symbol, that is H ¢ C, playing the rdle of
cartesian product.

In lemma 1, we show how to combine narrowing and ordinary unification to build
T-unifiers. This lemma will show the correctness of the unification algorithm.

O L v

Lemma 1. Let us consider any A\p+-derivation:
M = H(P, Q) = McArMi = H(P1, Qa\r** - N\r* Ma = H(Pa, Qn),

such that P, and @, are unifiable, say by substitution 0. Then 08, is a T-unifier of P
and Q, where 0, is the composition of substitutions along the derivation, as defined in

theorem 1.

Proof. Using the ¢ part of the previous theorem with n = p,, we can associate to this
A/+-derivation the following —-derivation:

Ba(M) = No~ Ny = N3 — --- » Ny = H(N%,NJ),
and thus, we have: . .
6.(P) = Ny & 0.(Q)— N3
Moreover, since 5, = € in this case, we have:
N£=Pn & N$=Qm
thus:
aG..(P) =7 ao"(Q)l

since these two terms are —-reducible to the same term. J

In lemma 2 we show that any T-unifier may be reached in such a way. This lemma
will be used when showing the completeness of the T-unification algorithm.

Lemma 2. Let P and @ be two terms that are T-unifiable, p be any T-unifier, and V
be a finite set of variables containing V(P)U V(Q). Then there exists a A\r+-derivation:

M = H(P, @) = MoA» M = H(P,, @)\« N\p* M = H(P», @),

such that P, and Q. are unifiable. Let p be the minimum unifier of P, and @n, we
have:

#a <7 p [V].
9
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Moreover, we are allowed to restrict our attention to A\ -derivations such that: Vi, 0 <

. t<n, 6; 1V is normalized.

Proof. We have p(P) =1 p(Q) thus with n = R(p), where (R(p))(z) = R(p(z)),
n(P) =1 n(Q) that is these two terms have a same normal form which we call R. Then
we have:

n(M) = H(n(P),n(Q)) = No — - = Na = H(R,R).
The corresponding Ay+-derivation is such that:

nn(Man) = H(nn(Pn), na(@n)) = Na = H(R, R).

Thus n, is a unifier of P, and @,. Let x be the minimum unifier, we have: 3¢ £u = n,,

therefore:
(Eubn t V)= ('luon 1 V) =(n1 V=r(p1 V),

that is:
un <7 p V],

which proves the lemma. §
We are now ready to describe how to build a complete set of T-unifiers for two
terms.

Theorem 2. Let T be the equational theory defined by a canonical term rewriting sys-
tem R. Let P and Q be two terms, M be H(P, Q) where H is a new function symbol
(H ¢ C), and V be a finite set of variables containing V{(M). Let L' be the set of all
substitutions o such that o is in I iff there exists a \p+-derivation:

M = H(P,Q) = Mo\~ My = H(Py, i\¢** - N\* Mo = H(P, @n),

such that Pa and Q. are unifiable, 8, is normalised, and 0 = ufn where p is the min-
imum unifier of Py and @,. Then L is a complete set of T-unifiers of P and @ away

from V.

Proof. Lemma 1 proves consistency and lemma 2 proves completeness. B

A T-unification algorithm follows from the construction of theorem 2: enumerate all
elements of X'. Essentially this algorithm is the same as Fay's; however we do not nor-
malize terms at each step. Note that although this set may be infinite, one can organize
the enumeration so that if two terms P and @ are T-unifiable, then a T-unifier will be
produced in a finite number of steps. Thus this algorithm gives a semi-decision procedure
for T-unifiability. In the following section we shall study how to refine this algorithm so
as to eliminate redundancies. Moreover, a sufficient condition for the termination of the
construction will be given.

Note also that this algorithm does not enumerate a minimal set of unifiers (even
when such a set exists, as one can see in the example of associativity). We will give an
example in section 5 where a complete and finite T-unification algorithm is known and
the algorithm described here does not even terminate.

10




4. Elimination of redundancies.

In this section we are interested in eliminating some redundancies in the construc-
tion of theorem 2. To achieve this aim we shall restrict our attention to special Aq-
derivations. Since we have secn in theorem 1 that any Ap+-derivation issuing from M
is the “projection” of a —-derivation issuing from n(M) such that n is normalized, we
shall first give a particular property verified by all such —-derivations.

Definition. Let us consider a term N and a set of occurrences U of a proper prefix of
N (e.g. U = O(M), for some M < N). We define by induction what it means for a
derivation:
4 N = No = ugko) N1 = ugbs) *** =i skies) Niy
to be based on U, and we construct sets of occurrences U; C O(N;:), 0 < ¢t < n, as
follows:
e the empty derivation is based on U, and Uy = U,

o if the derivation above is based on U, then the derivation obtained from it by adding
one step N; —(y,x Ni41 is based on U iff u; € U;, and in this case we take:

Uitr = (Ui — {v € UiJui < v}) U {us- v]v € O(6x,))}-

This definition is quite technical, but the practical meaning is easy to understand.
Consider, for instance, the following term rewriting system:

7 (h(z)) — h(z); (r1)
h(h(z)) = =; (r2)
h(a) - a. : (r3)

We consider terms M = h(f(z)) and N = h(f(h(a))) that is N = o(M) with o(z) =
h(a). Note that o is not normalized (see lemma 3 below). In order to be based on O( M),
a derivation issuing from N must not aflect o(z). For instance, the following derivation

using rule (r3) is not based on O(M):
N = h(f(h(a))) = h(f(a)).

Thus, it must affect a subterm that has a prefix in M; for instance, the following step
of reduction using rule (r1):

N = h(f(h(a)) > h(h(a))

Since the affected subterm was f(h(a)), the definition says that we can iterate these
considerations with M; = A(z), N; = h(h(a)) and o;(z) = h(a). Thus, the only way to
go on is:

h(h{a)) = a.

Let us now give a lemma showing our interest in derivations based on a set of occurrences.

- 11
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Lemma 3. Let N = n(M), with n normalised. Every —-derivation from N is based on
O(M).
Proof. Obvious. B

Definition. A Ay+-derivation:
M= MNl“o.kol MlN"(u.#:lM?)V" ‘ JV‘(N—;-M~:IM"'

is said to be basic iff it is based on O(M) (in the same sense as in the previous definition
for —-derivation).

Let us now consider the Ap+-derivation:
M = Mo\ [vo,k0,00 MNP (a5, k505 M3 NP {une s knes10n—1) Mn,
associated by theorem 1 to any —-derivation:
n(M) = No —{ug,k0) N1 ~[us,ks] N3 = *** = [un_1,kns} Na,

such that n is normalised. Because of lemma 3 this —-derivation is based on O(M),
and since the sets U; are the same for the —»-derivation and the Ay+-derivation it follows
easily that the considered N\pe-derivation is basic. Thus, we have:

Theorem 3. The Ape-derivations constructed in the =-part of theorem 1 are all basic.
As a corollary of theorem 3 we can now give a refined version of theorem 2:

Theorem 4. Theorem 2 holds if we consider only basic A\r+-derivations.

The main interest of this theorem is that we can give a sufficient condition for the
termination of the narrowing process when we consider only basic A+-derivations and,
therefore, for the termination of the corresponding T-unification algorithm.

Proposition 1. Let R = {7 — bx} be a canonical term rewriting system such that any
basic Ap+-derivation issuing from any of the 6x's terminates. Then any \+-derivation
issuing from any term terminates.

Proof. Let us consider any basic Ap+-derivation:

M = MAP ) M AN [ g MAP (g M s - .

The basic idea underlying the proof is the following: at each step of the derivation, either
u; comes from O(M) and such an occurrence may be used only one time, or this step of
derivation “is part” of some A\p+-derivation issuing from a §x. More formally, we define
sets of occurrences §; by:

o So = O(My),

¢ Sir1=(9i—{uju€ i & ui=<u})if u;€ Giand §;41 = G otherwise.

12




We also define sets X;. Each element of a X; will be a pair whose left part is an occurrence
u and whose right part is an integer n(u). For each 4% — 8x € R we define integer ny to
be the maximal length of a derivation issuing from &.

o No=0,
oif u; € Gi, Nit1=(i— {(u,nu))|ju€ N & ui<u}U {{u,ns)}, -

o otherwise let us consider the following sequence of occurrences in Ni:

00=A,01,...,U,=u;.

Since u;¢;, there exists an integer g such that vq € G: and vq+1¢G;. In this case,
we define: X1 = (Ni— {(vq+1,n(vg+ 1)} U {(va+1, n{vg+1) — 1)} (note that vt -
is an u; with j <)
Along the lines of the definition of basic A\r+-derivation, it is easy to prove that, if a right
part of a couple in one X; reaches value 0, then no more narrowing will be possible under
the corresponding left part occurrence. Moreover, one of the two following situations ]
occurs:

(a) either | Giga| < |Gi|, | Mita) < Pl + 1, 1

{b) or |Gi41| = |9, |Xi41] = |Xi|, and the right part of one of the elements of X; has
decreased from 1.

Thus situation (a) may occur only | Go| times in the derivation. Then we have Vi, |¥i| <
|Go|. It is then easy to prove the termination, using the decreasing of the integers in |
situation (b). . ’ :

Proposition 2. If the hypothesis of proposition 1 holds, the construction of theorem 4
leads to a complete and finite T-unification algorithm.

Example 1. In the case where all right parts of the rules of a canonical term rewriting
system are variables, the previous proposition obviously applies. This is the case for the
idempotency law alone. However, in this case, a more powerful (because it is minimal)
complete and finite T-unification algorithm is known [26].

Example 2. Another example is quasi-group theory, which can be defined by the follow- o
ing set of equations:

z+(z\y)=u; (a1)
(z/y)ry==5; (a2)
z\(z*y)=u (a3)
(zey)/v=2=2 (a4) }

13




This set of equations can be embedded in a canonical term rewriting system R, as shown
in [11):

ze(z\y) >y (r1)
(z/9)*y— 3 (r2)
z\(z+y) > v (r3)
(z+9)/y— 2 (r4)
(z/\z-y (r5)
z/(y\z)— v (r6)

Thus, we obtain the first known complete and finite T-unification algorithm for quasi-
group theory. Note that our result applies in the same way to all particular quasi-group
with identities studied by Hullot in [11).

Example 3. This example is from Lankford [15]. Let us consider a theory T' defined
by a finite set of ground equations. In this case, using a lexicographic ordering to show
the finite termination property, it is always possible to build a canonical term rewriting
system from the equations. Moreover, since the right parts of the resulting rewrite rules
are ground, no Ap+-derivation is possible from these terms. Thus, the narrowing process
is finite and the construction of theorems 2 and 3 is a quite elegant way to solve equations
in such theories. We have implemented this equation-solver as a LISP program.

5. Extensions,

Under certain conditions it is possible to define canonical term rewriting systems on
equivalence classes of terms modulo permutations. This has been done for commutativity
by Lankford and Ballantyne [16], for associativity and commutativity by Lankford and
Ballantyne [18] and Peterson and Stickel [24]. In the case where the term rewriting
sytem is left linear Huet [6,7] has given general results. In this section we will extend
the results of sections 3 and 4 to all these cases.

Let T be the equational theory defined by T = £ U R where R is a term rewriting
system and £ is a set of equations verifying:

Vir,8)€€E  V(7)= V(5)

"In this entire section we assume the existence of a complete £-unification algorithm.

We shall study three cases according to the three methods known to extend Knuth and
Bendix's results.

First we shall study the case where R is a canonical term rewriting system modulo
=¢ (Huet [6]), that is — 3 is ncetherian in the quotient structure by =¢, and —z is
confluent modulo =¢, e.g. VM, Ma, M}, M}, such that M, =¢ M; and M; — M,
and M; — M}, then 3MY, MY such that M} =% MY, My =3 M} and MY =

14
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MY. Note that if £-equality is decidable, a decision procedure for T-equality is known:
M =y M'ift R(M) =¢ R(M").
For the two other cases, we have to define a new relationon T:

Py = =R,

that is: to achieve one step of —., to a term M, one has to find any term £-equivalent
to M which is — z-simplifiable and then to achieve one step of ~ g-reduction. We define
also a new notion of canonical term rewriting system: we say that R is a canonical term
rewriting system over £ iff — ., is ncetherian and — 2 is confluent over =¢, that is VM,
M), Mj, such that M —_, M, and M —., M,, then IM',, M}, such that M; = M’
and M; —., M} and M, =¢ M). Note that in the case where £-equality is decidable
and —» . -simplifiability is decidable and R is a canonical term rewriting system over =,
we have a decision procedure for T-equality: M =¢ M’ ifl Ra(M) =¢ R.(M’) where
Ras(M) is & —o-normal form of M which is unique modulo =¢.

One difficulty with this approach is the need of a decision procedure for — .-
simplifiability. In the case where all equivalences classes under =; are finite, such a
decision procedure is easily obtained by generating the equivalence class of a term and
by checking — z-simplifiability on each element of this class. This is the way used by
Lankford and Ballantyne when dealing with permutative reductions [16,17,18).

Another way is given by Huet in [7]. We first give a definition.

Definition. — 4 is said to be ==¢-uniform iff:

M- N & M=;M=33N'" M -N.

Proposition. Assume — g is ==¢-uniform, then for any term M, M is - a-reductible iff
M is —-reductible.

Proof. Obvious 1

Huet gives in (7] a way to decide, for any finite left linear term rewriting system R
and any finite set of equations £ having decidable £-equality if R is a canonical term

rewriting system over =g.
Another way has been introduced by Peterson and Stickel [24]. The idea is to

extend — 2 in a new relation — 2 ¢. g
Definition. We say that M —,¢ N iff:

Iy —+6€R 3o uEOM) Mliu=¢ol1) N= Mlu+ of) ;

e

Note that — 2, ¢-simplifiability is decidable when R is finite, if T-matching is deci-
dable. We define now a new notion of uniformity.

Decfinition. — g ¢ is said to be £-uniform iff:

VM,N M=o N=3P M-p.P.

15




Proposition. Assume — g, ¢ is £-uniform, then for any term M, M — . -simplifiable iff
M — g, ¢-simplifiable.

Proof. Obvious

Peterson and Stickel give in [24] a way to decide if R is a canonical term rewriting
system over £ in the case where there exists a complete £-unification algorithm and R
is “£-compatible” which condition is stronger than £-uniform.

We shall extend our results to the three following cases:

(1) R is a canonical term rewriting system modulo =;.

(2) R is a canonical term rewriting system over =¢ and — 2 is =¢-uniform.

(3) R is a canonical term rewriting system over =¢ and — »,¢ is £-uniform.
For cases (1) and (2) we will use the same notion of narrowing as in the previous sec-
tion. For case (3) we shall define a new definition of narrowing using — »,¢ instead of
— 2. Note that this notion of extended narrowing has been introduced by Lankford and
Ballantyne [19] in the case of associative commutative derivations. We generalise the
result to all cases covered by Peterson and Stickel's paper (23] and prove the correctness

of this new T-unification process.
Note that we extend theorems 1 and 2; however, it is possible to extend results of

section 4 as well.

5.1. Extension to cases (1) and (3).

Lemma 4 (resp. 5) is an analogue of lemma 1 (resp.2). We use the same notations:
P and Q are two terms, H is a “new” function symbol and M is H(P, Q).

Lemma 4. Let us consider any A\y+-derivation:
M= H(PnQ) = MNMI =H(PthN"‘Mn = H(Plnql)c

such that P, and Q. are £-unifiable, say by substitution 0. Then 00, is a T-unifier of
P and Q.

Proof. The proof closely follows that of lemma 1. §

Lemma 5. Let P and Q be two terms that are T-unifiable, p be any T-unifier and V be
a finite set of variables containing V(P)U V(Q). Then there exists 8 Aps-derivation:

M = H(P,Q) = MAr M, = H(P,, :\v*: - A\* My = H(P,,Qu),

such that P, and Qn are £-unifiable. Let L be any complete set of £ -unifiers of Pa and
Qa away from V U V,. We have:

3# € r ﬂv’u Sl‘ PlV].
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Moreover, we are allowed to restrict our attention to Ay-derivations such that: Vs, 0 <
t < n,0; 1V is normalised.

Proof. We have p(P) =1 p(Q) thus with n = R(p), n(P) =r n(Q). Let us consider a
derivation from n{M) to one of its normal forms:

n(M) = H(n(P),n(Q)) = No = -+ = Na = H(Np, Ng),

where Np is a —-normal form of n(P) and Ng is a —+-normal form of #(Q). In the two
cases we are studying, we have then Np =; Ng. For the corresponding Ape-derivation

we have:
').(M.) = H(ﬂ.(P‘), 'lu(Qu)) = Np = H(NPn NQ)-

Thus, 7. is a £-unifier of P, and Q.. Let L be any complete set of £-unifiers away from
V U Va. We have:
EZ ut(VUV)<emt(VUW),

then:
3¢ (E“) t (V V) Vl) =¢nNat (V U Vl)t

thus:
(€uda) t V =((€m) 1 (VU Va))0n t V) =c ((na 1 (V U Va))(6n T V) = (naba 1 V)
and:
(MabatV)=(ntV)=r(p1V)
that is:
“on _<..T p'V])

which proves the lemma. [
We can now give an analogue of theorem 2:

Theorem 5. Let T be the equational theory defined by T = R U £ where R is:
e either a canonical term rewriting system modulo =g,
e or a canonical term rewriting system over =¢ such that —p is =¢-uniform,
and £ is a set of equations defining an equational theory in which a complete £-

unification algorithm is known.
Let P and Q be two terms, M be H(P,Q) where H is a new function symbol (H ¢
C), V be a finite set of variables containing V(M). Let L' be the set of all substitutions

o such that o is in I iff there exists a A\p+-derivation:
M = H(P,Q) = MA» M, = H(P,,i)\* My = H(P,, Q4),

such that P, and Qa are -unifiable, 6, is normalised and 0 = ub, where u is any
element in a complete set of £ -unifiers of P, and Q. away from V U V.. Then L is a
complete set of T-unifiers of P and Q away from V.

Proof. Lemma 3 proves consistency and lemma 4 proves completeness.

17
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5.2. Extension to case (3).

R is a canonical term rewriting system over =¢ and —2,¢ is £-uniform. In this
case, we need to define a new notion of narrowing.

Deflnition. Let M be a term and V be a finite set of variables containing V(M). Assume
the following situation holds:

JueO(M) =6 ER U(M[u, 1, Wa) # 0,

where we assume 7« — 8 is renamed so that V(ya) NV = 0 and Wi is a finite set of
variables containing V(1)U V.

Let £ be any complete set of £-unifiers of M/u and 7y« away from Wi, then each
element of £ will be called £-narrowing substitution of M away from V. NS¢(M,V)
will denote the set of all such substitutions.

Let N be the term o(M|u « &]) where o is any substitution in Z. We say that
M is £-narrowable in M at occurrence u using rule 4x — & and we write:

MM‘!["“I‘)N'

Ay ¢ is called £-narrowing relation on T.

Notations. We will use all notations of section 3. In particular Ap+ s-derivations are
defined in an obvious way.

Theorem 6. Theorem 1 holds if we replace ~-derivation by — 3, ¢-derivation and Ar-
derivation by Ny ¢-derivation.

Proof. The proof follows closely the one of theorem 1, we do not give it. 1

It is now easy to prove lemmas 4 and 5 where narrowing is replaced by £-narrowing.
Finally we give an analogue of theorems 2 and 5.

Theorem 7. Let T be the equational theory defined by T = RUE. £ is a set of equations
defining an equational theory in which a complete £ -unification algorithm is known. R
is a canonical term rewriting system over =¢ such that —z ¢ is £-uniform. Then the
result of theorem 5 holds where £ -narrowing is used instead of narrowing.

Example. We give an example in abelian group theory. In this case £ will be the set
of two equations defining the associativity and commutativity of 4-. We list below a
canonical term rewriting system for abelian group theory :

z240— 2z (r1)
z+(—2)~0; (rd)
—0 — 0; (r3)
—(—2) >3 (r4)

~(z+9) = (—2)+ (—v) (r5)
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This example appears in [24,18]. Note that we need to consider extended rules only for
rule (r2):
z+(—2)+y—y (er2)
With this rule £-compatibility is ensured (see [23]), and £-uniformity follows.
Lankford has proposed to orient rule (r5) from right to left. In this case we obtain

another complete set of reductions for abelian groups. Rules (r1) to (r4) are the same,

the others are:

(—a)+{(—y)—~ —(z+9) (r5')
—((~2)+y) =z +(—v) (r6')
2+ ~(y +2) - (—0). (1)
In this case we need to consider extended rules for rules (r5’) and (r7’), that is:

(—2)+(~9)+2-> —(z+y)+2 (ers’)
z+—(y+2)+z- (- +2 (erT’)

As in the previous example, £-compatibility and £-uniformity are then ensured.
Let us now consider term M; = —z; (this example is from Lankford). We show

that there exists an infinite A+ o-derivation issuing from M, even if we restrict ourself
to basic Ay s-reduction, as one can define in the same way as basic Ap+-reductions. We
begin with the first term rewriting system . M, is £-unifiable with the left part of rule
(r5), 0 = {{(z1 «~ z + y)} being a unifier. Thus, we have (after renaming):

M, = —2, N\ My = (—23) + (—p1).
In the same way, using subterm —z; we have:
Mz = (—z3) + (—h N\ My = (—z3) + (—v1) + (~y3),
and more generally:
Mp = (—2a) + (—91) + - + (—¥n—1\* Mn 4y,

showing the existence of an infinite Ar+¢-derivation. Note that we have used only basic

Ay e-derivations.
When dealing with the second term rewriting system, consider rule (ré’). We build

the infinite derivation:
M, = —h‘\‘M'a = (—z3) + y A\ AP M = (—za) + 1+ +Un—a

Thus, none of these two canonical term rewriting systems leads to a finite T-unification
algorithm with the methods described in this paper. However, there exists a complete
and finite T-unification algorithm for abelian group theory as shown by Lanklord [14].
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Remark. Ballantyne and Lankford have shown in [1] how to solve the word problem for
finitely presented commutative semigroups by using associative and commutative term
rewriting systems. Thus one could be interested in solving equations in commutative
semigroups using the method described in this section. However, we cannot expect to
show termination of the algorithm because some of these equations have infinite sets
of independent unifiers. Let us for instance consider the associative and commutative
equational theory defined by ab = @ and let us try to unify az and a where z is a
variable. It is easy to show that z «— b, z « bb, z « bbb, ... are independent unifiers.
(This example was communicated to the author by A.M. Ballantyne).

6. Conclusion.

We have shown in this paper how to improve upon Fay's T-unification algorithm.
In particular, we have given a sufficient condition for the termination of this algorithm,
proving a refined version of a conjecture by Lankford. Furthermore we have shown how
to extend Fay's algorithm to equational theories defined by various kinds of canonical
term rewriting systems.
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